论文研究基于神经网络的需求预测模型.pdf
同步定位与地图构建(SLAM)是移动机器人实现真正自主的关键,无迹卡尔曼滤波(UKF)由于直接利用系统非线性模型而在SLAM问题中得到广泛的应用。基于平方根滤波可以确保协方差矩阵的非负定的思想,将平方根UKF应用到SLAM问题中,确保了SLAM算法的稳定性,并得到了较高的估计精度。仿真结果表明,该算法是有效的。
同步定位与地图构建(SLAM)是移动机器人实现真正自主的关键,无迹卡尔曼滤波(UKF)由于直接利用系统非线性模型而在SLAM问题中得到广泛的应用。基于平方根滤波可以确保协方差矩阵的非负定的思想,将平方根UKF应用到SLAM问题中,确保了SLAM算法的稳定性,并得到了较高的估计精度。仿真结果表明,该算法是有效的。