可能性聚类算法(PCM)通过引入可能隶属关系来提高聚类中心免于噪声干扰的能力,但是其往往趋向找到相同的集群。为了克服PCM算法的缺陷,PFCM算法同时利用隶属度与可能性把数据点划分到不同的集群中。提高了算法的抗噪能力。但PFCM算法对发现大小不相等的集群并不十分理想。因此提出了一种特征空间属性加权混合C均值模糊核聚类算法WKFM,该方法充分考虑了属性间的不平衡性,通过利用优化选取核参数的核函数把在原始空间中非线性可分的集群转化为高维空间中同质集群。实验结果表明,该算法能更好地发现含有噪音数据集的聚类中心,获得数据集质量更好的划分。