针对两种基于KNN图孤立点检测方法:入度统计法(ODIN)和K最邻近(K-nearestNeighbor,RSS)算法的不足,提出了一种新的改进方法:两阶段孤立点检测方法,并进行了适当扩充使之适用于数据集中孤立点数目未知情况下的孤立点检测。算法应用于“小样本,高维度”的基因微阵列数据集进行样本孤立点检测取得了很好效果,证明了此方法的有效性。