通过对运动想象脑电信号的分类,对受试者进行身份识别。采用一种盲源分离算法——二阶盲辨识对运动想象脑电信号进行处理,提高运动想象脑电信号的信噪比,进而采用Fisher距离对处理后的信号进行特征提取,最后采用BP神经网络对特征集进行分类,从而实现对受试者的身份识别。对3位受试者的4类运动想象脑电信号分别进行了分类识别,结果显示,4类运动想象脑电信号的识别率均达到80%左右,其中最高的是想象舌动脑电信号,其识别率达到88.1%,这在类似研究中属于较高的水平。