优化问题存在于科学、工程和工业的各个领域。在许多情况下,此类优化问题,特别是在当前场景中,涉及各种决策变量、复杂的结构化目标和约束。通常,经典或传统的优化技术在以其原始形式求解此类现实优化问题时都会遇到困难。由于经典优化算法在求解大规模、高度非线性、通常不可微的问题时存在不足,因此需要开发高效、鲁棒的计算算法,无论问题大小,都可以对其进行求解。从自然中获得灵感,开发计算效率高的算法是处理现实世界优化问题的一种方法。从广义上讲,我们可以将这些算法应用于计算科学领域,尤其是计算智能领域。计算智能(CI)是一组受自然启发的计算方法和途径,用于解决复杂的现实世界问题。CI主要包括模糊系统(Fuzzy