根据TCP/IP协议族攻击的特征,提出在传输层上将捕获的数据包分成三类(UDP、TCP和ICMP)分别进行编码并输入到三个不同的神经网络中训练、检测。根据以上思想设计并实现了一个基于BP神经网络的实时入侵检测系统的原型。该原型系统具有通用性和可扩展性,能够根据需要灵活调整网络结构和训练参数,可以发展为更精确的网络入侵检测系统。最后给出了实验设计及其结果,证明了文中对数据包分类处理的方法既能减少网络训练的次数,又能提高网络检测的精度。