针对海量论文数据导致的应用效率低下问题,提出一个基于层次混合模型的推荐算法WSVD。该模型根据学术论文良好的结构特征,构建一个加权的论文二部图模型。首先对论文进行特征提取,按不同特征的权重构建论文的复合关系图;其次对关系图采用一种改进的PPR算法,计算每篇论文的重要程度,依此来对用户—论文关系进行加权;然后在构建好的加权二部图模型上混合SVD图算法进行推荐。实验结果表明,改善了推荐算法学术论文的推荐效果,并且基于分布式图计算框架GraphX,扩展性好,适合大数据处理。