基于遗传优化的BP神经网络法在甲烷检测中的应用
针对传统的最小二乘法拟合红外传感器的输出特性曲线时存在误差大、计算复杂,传统的BP神经网络法拟合红外传感器的输出特性曲线时存在网络收敛速度慢、易陷入局部极小的问题,通过分析改进的最小二乘法和改进的基于遗传优化的BP神经网络法的拟合效果,指出改进的BP神经网络法拟合度较高,并给出了改进的BP神经网络法在甲烷体积分数检测中的实验结果。结果表明,该方法能够拟合出理想的曲线,有效提高了红外传感器的检测精度及响应速度。
针对传统的最小二乘法拟合红外传感器的输出特性曲线时存在误差大、计算复杂,传统的BP神经网络法拟合红外传感器的输出特性曲线时存在网络收敛速度慢、易陷入局部极小的问题,通过分析改进的最小二乘法和改进的基于遗传优化的BP神经网络法的拟合效果,指出改进的BP神经网络法拟合度较高,并给出了改进的BP神经网络法在甲烷体积分数检测中的实验结果。结果表明,该方法能够拟合出理想的曲线,有效提高了红外传感器的检测精度及响应速度。