通过对投影非负矩阵分解(NMF)和二维Fisher线性判别的分析,针对NMF的特征提取存在无监督学习以及特征维数高的问题,提出了组合2DFLDA监督的非负矩阵分解和独立分量分析(SPGNMFICA)的特征提取方法。首先对样本进行投影梯度的非负矩阵分解,将得到的NMF子图像进行二维Fisher线性判别,主要反映类间差异信息构建子空间;对子空间的向量进行独立分量分析(ICA),得到独立分量特征空间;其次将样本在独立分量特征空间上进行投影;最后使用径向基网络对投影系数进行识别。通用人脸库ORL和YALE的识别实验证明,该算法是一种有效的特征提取和识别方法。