谱聚类算法是基于谱图划分理论的一种机器学习算法,它能在任意形状的样本空间上聚类且收敛于全局最优解。但是传统的谱聚类算法很难正确发现密度相差比较大的簇,参数的选取要靠多次实验和个人经验。结合半监督聚类的思想,在给出一部分监督信息的前提下,提出了一种基于共享近邻的成对约束谱聚类算法(PairwiseConstrainedSpectralClusteringBasedonSharedNearestNeighborhood,PCSC-SN)。PCSC-SN算法是用共享近邻去衡量数据对之间的相似性,用主动约束信息找到两个数据点之间的关系。在数据集UCI上做了一系列的实验,实验结果证明,与