最小主元分析(MinorComponentAnalysis,MCA)类自适应总体最小二乘算法易受初始权值向量的影响而无法收敛。为解决这一问题,提出了一种不受初始权值向量影响的MCA学习算法,推导出了该算法的收敛条件与最终收敛域,并通过计算机仿真验证了该算法的正确性。