大数据时代为机器学习的应用提供了广阔的空间,各行各业涉及数据分析的工作都需要使用机器学习算法。本书围绕实际数据分析的流程展开,着重介绍数据探索、数据预处理和常用的机器学习算法模型。本书从解决实际问题的角度出发,介绍回归算法、分类算法、推荐算法、排序算法和集成学习算法。在介绍每种机器学习算法模型时,书中不但阐述基本原理,而且讨论模型的评价与选择。为方便读者学习各种算法,本书介绍了R语言中相应的软件包并给出了示例程序。 本书的一大特色就是贴近工程实践。首先,本书仅侧重介绍当前工业界常用的机器学习算法,而不追求知识内容的覆盖面;其次,本书在介绍每类机器学习算法时,力求通俗易懂地阐述算法思想,而不追求