传统MeanShift目标跟踪算法通过bin-bin颜色直方图表示目标特征,直方图中往往会混入背景颜色信息,造成跟踪不准确;同时由于MeanShift算法具有局部最优性,当目标受到严重遮挡丢失后,不能对目标重新定位跟踪。为了解决上述问题,在颜色直方图和抗遮挡能力方面进行了改进。利用交叉bin颜色直方图代替传统的bin-bin颜色直方图表示目标特征,减少背景颜色的干扰,提高MeanShift算法跟踪精度;当目标受到严重遮挡丢失后,通过一种尺度变化调整机制,在全局范围内搜索目标位置,提高MeanShift算法抗遮挡能力。实验显示,改进后的算法不仅在背景干扰大时对目标的跟踪精度更高,而且当目标受到严