针对滚动轴承故障特征混叠难以有效区分的问题,提出基于局部线性嵌入(LLE)与最小二乘支持向量机(LSSVM)结合的故障诊断方法。在由振动信号时域和频域统计指标构造的多维特征空间中,通过LLE算法对多维特征空间进行非线性降维处理,得到初始低维流形结构。将低维流形结构导入LSSVM中进行学习训练与故障辨识。应用于滚动轴承故障分析表明,该方法不仅对高维复杂的非线性故障特征具有良好的降维性能,而且故障识别率较之传统方法有明显提高,能够有效识别出高维特征空间的非线性故障特征。