针对煤层底板突水预测问题,在总结现有突水预测方法和理论的基础上,通过特征选择实验得出水压、距工作面距离、砂岩段厚度、煤层厚度、煤层倾角、断层落差、是否裂隙带、开采面积、采高、走向长度是影响突水发生的主要因素,这些因素具有复杂、非线性的特点。提出基于长短时记忆(LSTM)神经网络构建的突水预测模型,将煤矿突水实例的数据作为样本数据对模型进行训练。最后,将LSTM神经网络模型与遗传算法–反向传播(GA-BP)神经网络模型和反向传播(BP)神经网络模型进行对比实验。实验结果表明,LSTM神经网络模型在测试集上的预测正确率更高,稳定性更好,更加适用于煤层底板突水预测。