基于RBF神经网络的瓦斯涌出量预测
传统瓦斯涌出量预测方法存在一定的局限性,预测精度不能满足要求。为了提高瓦斯涌出量预测精度,采用RBF神经网络对瓦斯涌出量相关数据进行建模。通过训练13组样本,对5组数据进行预测,分析了隐层神经元个数对预测精度的影响,并与同结构的BP神经网络预测结果进行了对比。研究结果证明了RBF神经网络在瓦斯涌出量预测中的有效性。
传统瓦斯涌出量预测方法存在一定的局限性,预测精度不能满足要求。为了提高瓦斯涌出量预测精度,采用RBF神经网络对瓦斯涌出量相关数据进行建模。通过训练13组样本,对5组数据进行预测,分析了隐层神经元个数对预测精度的影响,并与同结构的BP神经网络预测结果进行了对比。研究结果证明了RBF神经网络在瓦斯涌出量预测中的有效性。