为了得到高质量的人脸特征,提高人脸识别性能,提出基于改进的Gabor变换和(2D)2NMF(二维非负矩阵分解法)的人脸识别方法。改进的Gabor变换提取的特征有较高的品质,鲁棒性增强。二维非负矩阵分解法降维能大大降低图像数据维数,缩短计算时间,提高识别率。最后在ORL人脸库中进行实验,结果表明改进的Gabor变换和二维NMF方法相结合计算时间略微增加,但识别效率明显提高,从而证明了该方法的有效性。