论文研究小波变换与分块统计在掌纹识别中的应用.pdf
用于身份鉴别的掌纹识别为信息安全提供了一种新的方案。提出一种变换域和统计域相结合的掌纹识别方法。对掌纹感兴趣区域(ROI)进行中值滤波再多级小波分解,对所有的高频子图像进行分块,求取每一子块高频系数的均值和方差,它们的组合构成该图像的特征向量,利用简单的最近邻分类器进行分类。运用UST掌纹图像库,对该算法进行了测试。从识别率为95.5%的实验结果看,该方法优于目前在掌纹识别上使用较多的子空间法。
用于身份鉴别的掌纹识别为信息安全提供了一种新的方案。提出一种变换域和统计域相结合的掌纹识别方法。对掌纹感兴趣区域(ROI)进行中值滤波再多级小波分解,对所有的高频子图像进行分块,求取每一子块高频系数的均值和方差,它们的组合构成该图像的特征向量,利用简单的最近邻分类器进行分类。运用UST掌纹图像库,对该算法进行了测试。从识别率为95.5%的实验结果看,该方法优于目前在掌纹识别上使用较多的子空间法。