针对传统CKF算法在解决高维问题时因非局部采样造成的滤波性能下降问题,基于设计的正交矩阵提出了一种改进的CKF算法。采用多元Taylor级数展开,揭示了CKF虽能解决UKF的数值不稳定性问题,但同时也引入了非局部采样问题这一事实;进一步设计出一种正交变换矩阵,用于对CKF算法中的采样点进行变换,并从理论上证明了提出的改进CKF算法相对于CKF在高维、强非线性等非局部采样问题突出的应用场合具有更高的估计精度。仿真结果验证了算法的有效性。