论文研究基于改进SIFT特征的双目图像匹配算法.pdf
针对SIFT(尺度不变特征变换)算法无法准确定位物体形状特征的问题,提出了一种结合了Harris角点和SIFT算法的立体匹配方法。在DOG尺度空间提取Harris算子作为图像的特征点并为每个特征点定义主方向,计算出特征点的32维特征向量描述子并用BBF算法检索同名特征点之间的欧式距离进行匹配。在降低SIFT算法的时间复杂度的同时提高了算法提取特征点的形状意义,在双目图像匹配实验中取得了较好的结果。
针对SIFT(尺度不变特征变换)算法无法准确定位物体形状特征的问题,提出了一种结合了Harris角点和SIFT算法的立体匹配方法。在DOG尺度空间提取Harris算子作为图像的特征点并为每个特征点定义主方向,计算出特征点的32维特征向量描述子并用BBF算法检索同名特征点之间的欧式距离进行匹配。在降低SIFT算法的时间复杂度的同时提高了算法提取特征点的形状意义,在双目图像匹配实验中取得了较好的结果。