针对低照度下图像降质严重的问题,提出了一种基于人眼视觉特性和Curvelet变换的低照度图像增强算法。首先将低照度图像转换至“色调-饱和度-亮度”(HSI)颜色空间,在Curvelet域中分解亮度参量得到不同尺度、不同方向的子带分量,以此构建人眼视觉模型;然后利用模型的亮度遮蔽特性和亮度-对比度遮蔽特性对高频分量进行非线性增强,同时对低频分量进行非线性拉伸;最后通过Curvelet逆变换重构亮度参量,结合原始图像的色度和饱和度分量将图像转换至原色彩空间,得到增强后的低照度图像。实验结果表明,该算法可以有效提升低照度图像的对比度和亮度,保持图像的细节信息,抑制图像噪声。