近年随着慕课(MOOC)等新兴教育教学手段的快速发展,大量的学习者学习行为可以被系统所记录和分析,从而为个性化教学奠定了重要基础。在Felder-Silverman学习风格模型的理论基础上,通过引入智能分析算法动态地分析和识别学习者学习风格,构建了一套融合了卷积神经网络和循环神经网络的“识别-推理”复合模型,通过学习者的线上学习行为、社区交互行为、学习内容浏览行为、点击拖动行为等学习过程识别其学习行为特征,并使用基于门控循环单元(GatedRecurrentUnit,GRU)的循环神经网络处理和预测其可能的学习风格及对学习内容形式的偏好,以更高效地为学习者提供适应于其学习风格的学习内容和路