针对中文问题分类的中心词识别不准确的问题,提出了一种基于条件随机场(CRF)和错误驱动学习相结合的识别方法。该方法采用CRF模型对问题的中心词进行初始标注,依据词的上下文信息用错误驱动的学习方法对其标注结果进行纠正。在训练有序规则的过程中,为了减少训练时间,结合中心词的特点对错误驱动算法进行了改进。实验结果表明,该方法在一定程度上提高了中心词的标注精度,达到88%。