为解决传统的使用视频彩色图像序列的智能监控容易受光照、颜色等因素影响的问题,提出结合Kinect深度图像和支持向量机的人体动作识别方法.利用Kinect在监控区域获得实时深度图像,并进行背景擦除,滤波处理和提取Haar特征.通过使用支持向量机的分类算法生成分类器,并对一组特定的静态动作识别结果进行分析.研究结果表明:使用深度图像对于静态动作有较好的识别率,并且与传统的基于彩色图像的智能监控相比,该方法不仅对于光照、颜色等因素不敏感,而且在识别的准确率和效率上均有提升.