针对由于Argo浮标的随机性和抛弃性而导致难以保证剖面数据质量的问题,根据滑动窗口(SlidingWindow,SW)与自回归移动平均(AutoRegressiveMovingAverage,ARMA)模型的特点,提出了一种基于滑动窗口和ARMA的Argo剖面异常检测算法。利用滑动窗口将Argo剖面时间序列进行划分,再通过建立ARMA模型获取剖面的预测值,然后确定置信区间,最后通过判断观测数据是否在置信区间内实现异常检测。通过全球Argo浮标剖面数据进行实验,在滑动窗口宽度10~20,置信度在80%~90%时,敏感度可以达到85%以上,且准确度在99%以上。