低秩双随机矩阵分解聚类(low-rankdoublystochasticmatrixdecompositionforclusteranalysis,DCD)通过最小化KL(Kullback-Leibler)散度准则:KL(A,S),从图关联矩阵S中获得一个非负低秩双随机矩阵分解:A=UUT(U≥0),并以U作为类标签矩阵进行聚类。在DCD方法中,因矩阵S是固定不可变的,故S初始取值选取的好坏对聚类结果有极大影响,这导致了它缺乏稳定性。针对这一问题,提出了一种基于图优化的DCD方法,将图关联矩阵S和DCD的优化集成在统一框架中,这改进和拓展了原始的DCD方法。实验结果表明,与DCD