高斯密度函数估计是一种参数化模型。高斯混合模型(GaussianMixtureModel,GMM)是单一高斯概率密度函数的延伸,GMM能够平滑地近似任意形状的密度分布。高斯混合模型种类有单高斯模型(SingleGaussianModel,SGM)和高斯混合模型(GaussianMixtureModel,GMM)两类。类似于聚类,根据高斯概率密度函数(ProbabilityDensityFunction,PDF)参数不同,每一个高斯模型可以看作一种类别,输入一个样本x,即可通过PDF计算其值,然后通过一个阈值来判断该样本是否属于高斯模型。很明显,SGM适合于仅有两类别问题