提出了一种使用后缀树聚类算法优化K-means文档聚类初始值的快速混合聚类方法STK-means。该方法首先构建文档集的后缀树模型,使用后缀树聚类算法识别初始聚类、提取K-means聚类算法初始值中心值。然后,把后缀树模型的节点映射到M维向量空间模型中的特征项,利用TF-IDF方案计算基于短语的文档向量特征值。最后,使用K-means算法产生聚类结果。实验结果表明该方法优于传统K-means聚类算法和后缀树聚类算法,并具备了这些算法聚类速度快的优点。