叙述了传统的PCA方法在处理QAR数据相似性问题的不足,提出基于EROS的KPCA方法处理QAR数据之间的相似性问题。通过引入EROS方法而不需要对数据进行向量化,引入核矩阵对QAR数据进行主成分分析,可以有效降低数据的维数。选取两组QAR数据集,采用支持向量积方法,选用不同数目的主成分进行分类实验,同SPCA方法和GPCA方法进行比较,实验结果显示把该方法运用到QAR数据集,具有较好的分类结果。