GPU有效地利用了数量巨大的晶体管制造大量的处理单元,适用于处理单任务多数据(SIMD)的计算任务。研究了GPU的体系结构及CUDA的编程模式,改进了基于CPU的希尔加解密方法,使用多个线程将计算中耗时的矩阵相乘部分改造成SIMD模式,并分析了线程块内线程数对加速比的影响。实验结果表明,基于GPU的并行矩阵相乘的希尔加解密方法成功实现了硬件加速,相对于CPU上运行的希尔加解密方法,其执行效率明显提高,可获取12倍以上的加速,并易于扩展,对大规模数据加密和解密处理呈现出高效的处理能力。