暂无评论
基于MATLAB的轴承故障诊断方法的研究
在电机滚动轴承的故障诊断领域中,由于电机运行环境的复杂性,以及目前大多数故障诊断依然是基于单参数进行,如振动、温度及电流等所能携带的故障特征进行诊断,所以不确定性因素及不确定信息也充斥其间,从而致使故
滚动轴承是应用最为广泛、也是最易损坏的机械设备关键零部件之一,其状态影响着整个设备的稳定运行。因此,滚动轴承的状态监测和故障诊断一直为大家所重视。而将声发射技术应用于滚动轴承的状态监测与故障诊断,是当
将多群体协同粒子群优化算法应用于RBF神经网络优化设计,不仅拓宽了算法本身的应用范围,而且在一定程度上提高了神经网络的泛化能力,为进一步利用神经网络解决实际工程问题提供了便利。利用优化后的RBF神经网
基于Hermitian的小波包络谱的滚动轴承故障的识别诊断及分析
基于决策树与神经网络结合的滚动轴承故障诊断方法,贾智涵,王晨升,提出了一种基于决策树与神经网络方法结合的改进滚动轴承故障诊断方法。该方法对滚动轴承振动信号进行EMD分解,使用决策树对分解信
针对不同轴承数据特征选择困难和单个分类器方法在滚动轴承故障诊断中精度较低的问题,提出了一种基于分类回归树(CART)的随机森林滚动轴承故障诊断算法。随机森林是包含了多种分类器的集成学习方法。通过随机森
滚动轴承是列车转动机件的支撑,也是铁路车辆上最容易危及行车安全的易损件。由于工作面接触应力的长期反复作用,极易引起轴承疲劳、裂纹、压痕等故障,导致轴承断裂,造成重大事故。轴承工作状态是否正常,对于列车
滚动轴承早期故障振动信号微弱,并且受环境噪声影响严重,特征信号提取困难。针对这一问题,提出了最大相关峭度解卷积方法来提取轴承故障的特征信号。通过计算信号的最大相关峭度值,估算出感兴趣的解卷积周期T,选
基于改进VMD_ELM和VPMCD算法的滚动轴承故障诊断方法研究_宋坤骏.caj
暂无评论