暂无评论
针对局部特征尺度分解(LocalCharacteristic-scaleDecomposition,LCD)方法中严重的端点效应,将BP神经网络应用到信号的延拓中,提出了一种提出基于BP神经网络延拓局
美国西储大学滚动轴承故障诊断数据集.zip
针对高线精轧机设备故障的特点,建立了精轧机在线监测系统。采集精轧机滚动轴承的振动信号,对振动信号采用时域、频域多角度分析,时域趋势图可以判断轴承的突发性故障,频域分析可以判断故障的性质及故障部位。有效
提出了一种基于复局部均值分解(CLMD)和复信号包络谱(CSES)的滚动轴承故障诊断新方法。首先通过互相垂直安装的加速度传感器采集2个方向的振动信号,并将其组成一个复数信号;然后利用CLMD对二元复数
故障轴承的振动信号是非平稳信号,传统的非平稳信号分析手段存在许多不足;BP网络能够出色地解决传统识别模式难以解决的复杂问题。提出了经验模态分解(EMD)与BP神经网络相结合的滚动轴承故障诊断方法。采用
针对现有机车车轮超声检测系统无法准确区分其故障类型,探讨了一种基于小波包变换与BP神经网络相结合的方法来识别基于超声检测机车车轮的故障类型。该方法对机车车轮的超声检测的回波信号进行小波包分解,并提取了
应用神经网络优化算法,进行网络参数优化计算。为了考察神经网络的优化算法,对实验室的转子模型进行了振动测试,获取其振动信号,将信号经分析仪分析,获取不同测点的动态信息及其参数分布规律,用神经网络优化算法
针对目前矿用风机的常见故障可收集故障征兆及类型,将故障样本数据与BP神经网络相结合,由BP神经网络确定输出向量,对风机常见故障进行诊断。通过MATLAB软件进行诊断参数运算后结果表明:神经网络输出与实
基于人工神经网络模拟电路的故障诊断算法研究
针对包络分析中带宽和中心频率依靠经验估计的缺陷,应用一种快速峭度图算法自动为包络谱分析提供最佳带宽和中心频率。快速峭度图算法借鉴了二进小波分解算法,先将原始信号经过FIR滤波器将信号进行分解,然后在各
暂无评论