位置大数据的价值提取与协同挖掘方法
随着位置服务和车联网应用的不断普及,由地理数据、车辆轨迹和应用记录等所构成的位置大数据已成为当前用来感知人类社群活动规律、分析地理国情和构建智慧城市的重要战略性资源,是大数据科学研究极其重要的一部分.与传统小样统计不同,大规模位置数据存在明显的混杂性、复杂性和稀疏性,需要对其进行价值提取和协同挖掘,才能获得更为准确的移动行为模式和区域局部特征,从而还原和生成满足关联应用分析的整体数据模型.因此,着重从以下3个方面系统综述了针对位置大数据的分析方法,包括:(1)针对数据混杂性,如何先从局部提取出移动对象的二阶行为模式和区域交通动力学特征;(2)针对数据复杂性,如何从时间和空间尺度上分别对位置复杂
暂无评论