暂无评论
基于小波分析和神经网络的电机故障诊断方法研究
利用BP神经网络对转子故障进行建模分析。发挥神经网络的自学能力和联想能力,对非训练样本,做出控制决策,表现非常灵活。可根据实验数据进行网络训练,用新数据进行模型验证。还与概率神经网络(PNN)进行对比
针对柴油机故障诊断、预测难的问题,分析了柴油机常见故障及影响因素,介绍了柴油机故障数据的提取、分析和处理方法,建立了一种基于概率神经网络的故障诊断与预测模型。仿真结果表明,该模型能够有效地对柴油机等复
在轴承的监测数据中,故障数据所占比例很小。在这种不平衡样本集中,如何准确地诊断轴承故障成为了一大难题。为此,提出运用孪生支持向量机(TWSVM)解决该难题。TWSVM可以构造2个不平行的超平面,每个超
针对机载机电作动器的故障诊断的问题,提出了一种基于小波包和自组织映射(SOM)神经网络结合的机电作动器故障诊断方法。为提高诊断的准确率,该方法应用小波包分解把机电作动器卡死、偏差、增益三类故障信号分解
基于遗传算法优化神经网络及其在故障诊断中的应用,马平,王英敏,针对BP神经网络收敛速度慢、易陷入局部极小的缺点,将具有全局搜索能力的遗传算法引入到神经网络的权值优化中。采用软件编程实现�
滚动轴承是机械传动系统重要的组成部分,其故障发生率极高,直接影响机械设备的正常、安全运行。基于此提出基于局部均值分解(LMD)模糊熵和概率神经网络(PNN)的滚动轴承故障诊断方法,原始振动信号应用LM
深度神经网络中过多的参数使得自身成为高度计算密集型和内存密集型的模型,这使得深度神经网络的应用不能轻易地移植到嵌入或移动设备上以解决特殊环境下的实际需求。为了解决该问题,提出了基于网络删减、参数共享两
人工鱼群算法在矿井提升机故障诊断中的应用,汪楚娇,夏士雄,基于因果模型的诊断方法是人工智能领域发展起来的一个十分活跃的分支.在该方法中,由故障症状集求解极小故障集的过程是一个NP-Hard问
结合隐马尔可夫模型(HMM)所需训练样本少及可解释的优点,提出了基于HMM的矿井提升机故障诊断方法。利用多个加速度传感器在提升机运行的不同转速阶段采集数据,通过快速傅里叶变换(FFT)从提升机振动信号
暂无评论