医学图像检索的效果很大程度上取决于特征提取的优劣。针对医学图像的自身特点,采用直方图、Gabor小波、不变矩三种典型方法分别提取了颜色、纹理、形状三类特征,然而将各种方法提取的特征直接用于图像检索效果并不理想。为此,提出了基于主元分析的特征级数据融合算法,避免了不同特征间数值上的悬殊对分类的影响,同时还达到了特征降维、去除特征间冗余的目的。实验结果表明,融合后的特征能更好地表达医学图像的内容,在医学图像检索中取得了较好的检索效果。