暂无评论
利用c#编写的朴素贝叶斯算法,后期会加入五折交叉算法
这是一篇2008年6月的硕士论文,详细的介绍了有关朴素贝叶斯 离散化的几种算法 包括EMD,PKI,muti_EMD,和weka中离散化的方法等等
针对传统显著目标检测方法中目标不能均匀高亮,背景噪声难以抑制的问题,提出了一种融合多尺度对比与贝叶斯模型的显著目标检测方法。将图像分割为一系列紧凑且颜色相同的超像素,并通过K-means算法对所得超像
Naive Bayesian algorithm classifier
针对传统朴素贝叶斯分类模型在入侵取证中存在的特征项冗余问题,以及没有考虑入侵行为所涉及的数据属性间的差别问题,提出一种基于改进的属性加权朴素贝叶斯分类方法。用一种改进的基于特征冗余度的信息增益算法对特
由于贝叶斯模型和各种图像测量结果,置信传播会更新每个节点的相关概率,提出了在自动交互图像分割过程中应用的新型贝叶斯网络模型。从过度分割模型中的超级像素点区域、边区域、顶点和测量结果之间的统计相关性来构
基于贝叶斯理论,为多视角目标跟踪问题建立了分布式数据融合的概率框架,并利用滤波器对搜需后验概率进行近似,提相互了自适应的观测模型和状态转移模型。
贝叶斯网络结构学习算法主要包括爬山法和K2算法等,但这些方法均要求面向大样本数据集。针对实际问题中样本集规模小的特点,通过引入概率密度核估计方法以实现对原始样本集的拓展,利用K2算法进行贝叶斯网络结构
为了得到正确的节点次序,构造接近最优的贝叶斯网络结构,利用最大信息系数与条件独立性测试相结合的方法,提出了一种新的贝叶斯网络结构学习算法(MICVO)。该算法利用最大信息系数衡量变量之间的依赖关系,生
针对故障和征兆关系不确定的网络中故障定位算法检测率低和误检率高的缺陷,提出了一种基于贝叶斯征兆解释度的链路故障定位算法。该算法以概率加权的二分图作为故障传播模型,通过处理贝叶斯后验概率信息,定义一种新
暂无评论