为克服传统的矿井巷道摩擦阻力系数测试方法工作量大、效率低等缺点,以摩擦阻力系数理论为基础并结合现场实际资料分析,归纳出影响矿井巷道摩擦阻力系数的主要因素:巷道断面积、巷道周长、巷道支护方式和巷道断面形状。构建基于BP神经网络的摩擦阻力系数预测模型,选取典型数据作为BP神经网络的学习样本和测试样本,运用Matlab软件进行网络训练,得到优化的网络模型。利用优化的网络模型对板石矿和大明一矿随机测点进行摩擦阻力系数预测,预测值与实测值误差不超过10%,表明该网络模型的预测结果具有较高的可靠性和工程实践价值。