暂无评论
为了改进粒子滤波算法的性能,这里研究了一种粒子滤波算法改进策略。该粒子滤波算法改进策略包括四部分:首先,采用了结合退火参数的混合建议分布,以考虑当前观测测量值的最新信息;接着,基于有效样本大小确定自适
针对粒子群优化算法稳定性较差和易陷入局部极值的缺点,提出了一种新颖的混沌粒子群优化算法。一方面,在可行域中应用逻辑自映射函数初始化生成均匀分布的粒群,提高了初始解的质量和增加了算法的稳定性;另一方面,
针对模糊层次分析法中存在的模糊判断矩阵一致性检验和修正困难、元素权重计算繁琐的问题,从模糊判断矩阵的定义角度出发,构建了基于粒子群算法的模糊层次分析模型PSO-FAHP,提出了包含模糊判断矩阵一致性修
为了有效解决粒子群优化算法易陷入局部最优的缺陷,在粒子群优化算法(PSO)的基础上引入莱维飞行,提出了一种基于莱维飞行的粒子群优化算法(LPSO)。该算法在迭代过程中对粒子位置进化效果进行判断,若粒子
针对高维数入侵检测数据集中信息冗余导致入侵检测算法处理速度慢的问题,提出了一种基于粒子群优化的入侵特征选择算法,通过分析网络入侵数据特征之间的相关性,可使粒子群优化算法在所有特征空间中优化搜索,自主选
基于动态特性的改进粒子群优化算法,苗爱敏,施心陵,针对现有粒子群算法缺乏优化问题的先验信息,粒子搜索具有盲目性的问题,提出了一种基于邻域粗糙集模型的改进粒子群优化算法。该
针对粒子群算法易于过早收敛的不足,通过引入粒子间新的相似度的概念来度量粒子群的多样性程度,并用自适应变化阈值手段来控制调整粒子群算法的收敛速度,使其缓缓趋向于全局最优,在粒子群算法迭代过程中以相似度为
提出了一种基于密度熵的多目标粒子群算法(EMOPSO)。采用一个外部集保存所发现的Pareto最优解(精英),并将外部集作为粒子的全局极值。为保证种群的多样性,当精英大于外部集的大小时采用一种基于密度
基于粒子群的多目标优化演化算法,陈建国,宋中山,针对当前大部分多目标优化演化算法在处理多目标问题时算法设计复杂,耗时巨大,取得的近似Pareto前沿点不够多,分布不均匀,覆盖不
为了解决标准粒子群优化算法容易陷入局部极小值的问题,模拟统计物理和热力学中的扩散现象,设计了一种扩散机制,根据扩散定律和扩散系数公式,给出了粒子的扩散能、种群的温度和粒子的扩散概率三个定义和扩散池的概
暂无评论