基于压缩感知理论的重建关键在于从压缩感知得到的低维数据中精确恢复出原始的高维稀疏数据。针对目前大多数算法都建立在稀疏度已知的基础上,提出一种后退型固定步长自适应匹配追踪重建算法,能够在稀疏度未知的条件下获得图像的精确重建。该算法通过较大固定步长的设置,保证待估信号支撑集大小的稳步快速增加;以相邻阶段重建信号的能量差为迭代停止条件,在迭代停止后通过简单的正则化方法向后剔除多余原子保证精确重建。实验结果表明,该算法在保证测量次数的条件下可以获得快速的精确重建。