暂无评论
滚动轴承是列车转动机件的支撑,也是铁路车辆上最容易危及行车安全的易损件。由于工作面接触应力的长期反复作用,极易引起轴承疲劳、裂纹、压痕等故障,导致轴承断裂,造成重大事故。轴承工作状态是否正常,对于列车
针对不同轴承数据特征选择困难和单个分类器方法在滚动轴承故障诊断中精度较低的问题,提出了一种基于分类回归树(CART)的随机森林滚动轴承故障诊断算法。随机森林是包含了多种分类器的集成学习方法。通过随机森
滚动轴承作为风电机组的关键部件,对于整个机组的安全运行起着决定性作用.针对机组滚动轴承故障诊断问题,提出一种节点优化型有向无环图大间隔分布机(O-DAG-LDM)的故障诊断方法.结合DAG多分类扩展性
基于频率响应分析提出一种新的轴承故障诊断方法。利用调试阶段测量得到的频率响应作为参考值,与具有2种故障类型的轴承所计算得到的频率响应作为对比,对2个测量量进行评估,并将故障轴承与正常轴承之间频率响应偏
滚动轴承早期故障振动信号微弱,并且受环境噪声影响严重,特征信号提取困难。针对这一问题,提出了最大相关峭度解卷积方法来提取轴承故障的特征信号。通过计算信号的最大相关峭度值,估算出感兴趣的解卷积周期T,选
独立分量分析(ICA)可以实现混合信号的按源分离,但由于其使用时通常需要预先知道信号源数量,使其应用受到限制。在ICA基础上发展起来的约束独立分量分析(cICA)方法,可根据一定的先验知识生成参考信号
从振动信号中提取故障特征是滚动轴承故障诊断的常用方法。提出了利用零空间追踪算法和包络谱分析进行滚动轴承故障诊断的方法。首先对轴承故障振动信号进行零空间追踪(Null Space Pursuit)分解,
针对现有旋转机械故障识别算法过度依赖专家先验知识的问题,提出了一种基于移不变字典学习和稀疏编码(SIDL-SC)的自适应故障识别算法。将不同故障状态下的振动信号进行分段和平滑预处理以降低数据处理复杂度
针对滚动轴承聚类故障聚类模式识别方法中需要预先设定聚类数目问题,提出了一种基于局部均值分解(localmeandecompoeiton,LMD)与基本尺度熵(basescaleentropy,BSE)
考虑到滚动轴承振动信号的非平稳特征和实际应用中典型故障样本不易获得等原因,而在实际应用中,故障程度识别和故障类型诊断一样重要,提出一种滚动轴承故障类型及故障程度识别方法。首先对原始振动信号进行EMD分
暂无评论