提出了一种新的RBF神经网络的训练方法,采用动态K-均值方法对RBF 神经网络的隐层中心值和宽度进行了优化,用代数算法训练隐层和输出层之间的权值。在对非线性函数进行逼近的仿真中,验证了该算法的有效性。