近年来空间colocation模式挖掘由传统数据扩展到了不确定数据、模糊数据领域,但在模糊数据层面上,只有少量关于对象模糊的研究,而对于模糊空间这一论域的研究还是空白。基于经典的colocation模式挖掘的理论,针对性地提出了面向模糊空间的colocation模式挖掘及相关定义,增加了模糊数据领域内研究的深度和广度,并根据模糊数学理论结合空间colocation挖掘的特点,在模糊距离隶属度函数未知的情况下建立了具有较好适用性的FS基本算法。该算法一改以往在经典数据集上需要验证”团实例”的复杂做法,大大提高了算法性能。在已知模糊距离隶属度函数时,给出一个同时适用于经典数据以及模糊数据的增加数据