传统聚类算法往往只适用于静态数据集的聚类。对于动态数据集,新增数据后,前期的聚类结果不再可靠,运用此类算法则需要重新聚类,这样会造成效率低下和计算资源浪费。在基于密度和自适应密度可达聚类算法的基础上,提出了一种新的增量聚类算法。理论分析和实验结果证明该算法能够有效地处理动态数据集,提高聚类效率和资源的利用率。