为了实现移动机器人在障碍环境中的路径规划,提出一种改进的混合蛙跳算法(SFLA)。改进算法在原算法基础上引入交叉操作,并在青蛙更新策略中充分利用学习机制;此外提出了一种带控制参数的产生新个体的方法代替原本的随机更新操作。把路径规划问题转换为最小化问题,基于环境中目标和障碍物的位置定义青蛙的适应度,机器人依次到达每次迭代中最好蛙的位置,从而实现最优路径规划。移动机器人仿真实验中,与基本蛙跳算法和其他智能算法相比,改进算法在规划时间和成功次数上均有很大的提高。实验结果表明了改进算法的有效性。