基于Elman神经网络的盾构滚刀磨损预测方法研究
为了解决盾构在复合地质掘进时滚刀磨损检测的难题,提出一种采用Elman神经网络预测盾构滚刀磨损状况的方法。利用滚刀换刀后正常磨损阶段的盾构掘进参数数据,建立Elman神经网络预测模型,根据依此模型得到的预测掘进速度与实际掘进速度的偏差来预测滚刀的磨损状况。文中分析了滚刀磨损影响因素,确定了Elman神经网络预测模型结构,给出了滚刀磨损判断依据。结合广州地铁五号线草淘区间左线盾构工程项目研究表明,预测结果与实际换刀情况相符。该方法建模简单,模型有效且适应性强,研究结论可为类似地质条件下的盾构滚刀磨损检测和更换提供有益的指导。
暂无评论