针对当前Census变换立体匹配算法深度不连续区域匹配精度低的缺陷,提出了一种新颖的自适应权重的Census变换立体匹配算法。在Census变换阶段计算变换窗口中心点上下左右四个像素的均值,得到中心点与该均值的差的绝对值,通过判断该绝对值的大小来确定中心点灰度值;为了有区别地对待窗口内各像素点,引入自适应权重,通过线性分段型函数计算自适应权值。在代价聚合阶段同样引入自适应权重并采用变化的聚合窗口,通过聚合窗口中心点和其左右两点的梯度值来确定聚合窗口的大小。实验结果表明,算法的匹配效果优于目前的Census变换立体匹配算法,在深度不连续区域匹配效果显著改善,而且没有明显降低实时性和增加硬件实现的