针对矿井突水事故的预测问题,提出一种基于极限学习机(Extreme Learning Machine,ELM)的矿井突水水源识别新方法。该方法是一种单隐含层前馈神经网络学习算法,在训练过程中无需调整初始连接权值和阈值,只需要设置隐含层神经元个数即可获得最优解。以梧桐庄煤矿水质为例,通过MATLAB仿真证实,该方法不仅克服了常规BP神经网络受初始权值和阈值影响的缺陷,而且识别精度更高;在突水预测方面有很好的应用前景。