为了提高半监督分类的有效性, 提出了一种基于SOM神经网络和协同训练的半监督分类算法Co-S3OM (coordination semi-supervised SOM)。将有限的有标记样本分为无重复的三个均等的训练集, 分别使用改进的监督SSOM算法(supervised SOM)训练三个单分类器, 通过三个单分类器共同投票的方法挖掘未标记样本中的隐含信息, 扩大有标记样本的数量, 依次扩充单分类器训练集, 生成最终的分类器。最后选取UCI数据集进行实验, 结果表明Co-S3OM具有较高的标记率和分类率。