由于自主水下机器人水动力模型参数的不确定性及其强非线性,提出神经网络动态滑模面控制法。将系统分为确定与不确定部分,通过滑模控制实现对系统确定部分的控制,通过神经网络所具有的自适应调节能力实现对未知干扰与不确定部分进行补偿控制,提高系统的强鲁棒性。通过Lyapunov法验证了控制算法的收敛性;通过MATLAB仿真平台和半物理仿真平台,验证了算法的鲁棒性和抗干扰性。