给出一组含有两个参数的二次三角多项式基函数,它是三次Bernstein基函数的扩展;分析了这组基函数的性质。定义了带有两个形状参数的三角多项式曲线,它不仅具有 Bézier 曲线的一些实用的几何特性,而且具有形状的可调性。在控制多边形不变的情况下,通过改变参数α和β,可以生成不同的逼近该控制多边形的曲线,并可以精确表示圆弧、椭圆弧等。由于带有两个参数,所以具有更加灵活的形状控制能力。给出了曲线间的G1、G2拼接条件以及在曲线造型中的应用实例,为自由曲线设计提供了一种有效的方法。